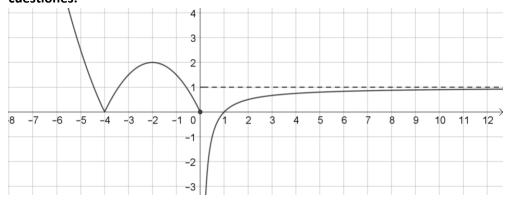
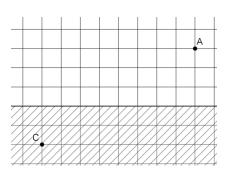
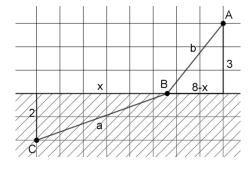
Matemáticas 1. Examen de Análisis (3). 05.03.2018.

1. (2 puntos) A partir de la gráfica de la función f representada, contesta razonadamente a las cuestiones:



- a) ¿Es f continua? No, es discontinua de salto infinito en x=0
- ¿Y derivable? No; además de en x = 0, hay otro punto donde f no es derivable, x = -4
- b) ¿Cuánto vale $\lim_{x\to\infty} f'(x)$? 0, ya que ésa es la pendiente de la asíntota a la que se aproxima.
- **¿Ylim**_{$x\to 0^+$} f'(x)? $+\infty$, ya que la tangente se va "poniendo" vertical al acercarse al 0.
- c) ¿Cuáles son las soluciones de la inecuación f '(x) \geq 0? $]-4,-2]U]0,\infty]$, ya que es ahí donde f es creciente o tiene un extremo relativo.
- d) ¿Y de f "(x) \leq 0?]-4,0[\cup]0, ∞ [, ya que es ahí donde f es convexa.
- 2. (2 puntos) El esquema muestra desde arriba la posición de un cocodrilo (C) que se encuentra en el río (zona rayada) y un antílope (A) que está pastando. . El cocodrilo, que intenta llegar lo más rápidamente posible a donde se encuentra el antílope, avanza por agua a 3 m/s y por tierra a 2 m/s. Encuentra la función que expresa el tiempo que tarda e indica su dominio (las unidades de la cuadrícula representan 1 metro).





La trayectoria depende del punto que elija para salir del agua. Sea B dicho punto, t_a el tiempo que tarda en recorrer el trayecto a y t_b el tiempo que tarda en recorrer b; como t=e/v, usando el teorema de Pitágoras se tiene:

$$a = \sqrt{x^2 + 4} \Rightarrow t_a = \frac{\sqrt{x^2 + 4}}{3};$$

$$b = \sqrt{9 + (8 - x)^2} \Rightarrow t_b = \frac{\sqrt{9 + (8 - x)^2}}{2}$$

$$f(x) = t_a + t_b = \frac{\sqrt{x^2 + 4}}{3} + \frac{\sqrt{9 + (8 - x)^2}}{2}, 0 \le x \le 8$$

3. (2 puntos) Estudia el crecimiento y la curvatura de $f(x) = arc tg(x^2)$

f es simétrica par y continua en todo \mathbb{R} .

$$f'(x) = \frac{2x}{x^4 + 1};$$
 $f''(x) = \frac{2 - 6x^4}{(x^4 + 1)^2};$

$$f'(x) = 0 \Rightarrow x = 0$$
; $f''(0) > 0 \Rightarrow$ mínimo en $x = 0 \Rightarrow$ crece en $]0, \infty[$

$$f''(x) = 0 \Rightarrow x = \pm \sqrt[4]{\frac{1}{3}}; \text{ si } -\sqrt[4]{\frac{1}{3}} < x < \sqrt[4]{\frac{1}{3}} \underset{x^4 < \frac{1}{3}}{\Longrightarrow} f''(x) > 0 \Rightarrow \text{convexa en } -\sqrt[4]{\frac{1}{3}}, \sqrt[4]{\frac{1}{3}}$$

si
$$x > \sqrt[4]{\frac{1}{3}} \xrightarrow[x^4 > \frac{1}{3}]{} f''(x) < 0 \Rightarrow \text{c\'oncava en } \left[\sqrt[4]{\frac{1}{3}}, \infty \right[\text{ y, por simetr\'ia, en } \right] - \infty, - \sqrt[4]{\frac{1}{3}} \left[\frac{1}{3}, \infty \right]$$

4. (2 puntos) Estudia la continuidad de las siguientes funciones:

a)
$$f(x) = \frac{\cos x}{x}$$

Es discontinua en x = 0, ya que $\mathbb{I}f(0)$ (división por 0);

$$\lim_{x\to 0} f(x) = \frac{1}{0} = \pm \infty \Rightarrow \text{as into ta vertical y disc. de salto infinito en } x = 0$$

$$b) f(x) = sen (tg x)$$

Tiene discontinuidades de segunda especie en $\left\{\frac{\pi}{2}+k\pi,\ k\in\mathbb{Z}\right\}$, ya que $\lim_{x\to\frac{\pi}{2}}f(x)=sen(\pm\infty)$

c)
$$f(x) = arc tg\left(\frac{1}{x}\right)$$

Es discontinua en x = 0, ya que $\nexists f(0)$

$$\lim_{x\to 0^+} f(x) = \operatorname{arc} \operatorname{tg}(+\infty) = \frac{\pi}{2}; \quad \lim_{x\to 0^-} f(x) = \operatorname{arc} \operatorname{tg}(-\infty) = -\frac{\pi}{2}; \Rightarrow \operatorname{disc.} \operatorname{de} \operatorname{salto} \operatorname{finito} \operatorname{en} x = 0$$

5. (2 puntos) Estudia la simetría y la tendencia de la función del apartado a) del ejercicio anterior. Encuentra su función derivada.

Simetría:
$$f(-x) = \frac{\cos(-x)}{-x} = \frac{\cos x}{-x} = -f(x) \Rightarrow impar$$

$$-\frac{1}{x} \le \frac{\cos x}{x} \le \frac{1}{x} \Rightarrow \lim_{x \to \pm \infty} f(x) = 0 \Rightarrow y = 0 \text{ es una asíntota horizontal por los dos lados.}$$

$$f'(x) = \frac{(-\sin x) \cdot x - \cos x}{x^2} = -\frac{x \sin x + \cos x}{x^2}$$